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This report documents our accomplishments during the period 1 February 2006 - 31 Jan-
uary 2010 in pursuit of the research goals stated in the proposal titled “Using Initial Ten-
dency Errors to Reduce Systematic Errors, Identify Model Errors, and Construct Stochastic
Parameterizations.”

1 Overall Goals and Methodology

The goal of this project was to improve the forecast skill of the GFS and CFS by developing
an empirical correction algorithm that would subtract the systematic tendency error at every
time step, and by developing stochastic models that would perturb the model in such a way
as to produce a forecast ensemble that accounted for both uncertainty in initial condition and
model error. The methodology for doing this was two fold. First, the tendency errors would
be estimated by fitting the forecast errors at 6, 12, 18, and 24 hour lead times to a function of
lead time, and then using the slope of the resulting fit to identify the tendency error growth
rate. Then, the climatological mean tendency error would be subtracted from the model
integration at every time step. It is important to recognize the innovation in this methodology:
by using short forecasts, errors in model components have little time to interact with errors in
other components. Second, the residuals from the fit would be used to estimate the statistics
of stochastic forcing terms that could be added to the model equations.

2 Summary of Results for the GFS

Tendency errors were estimated for the momentum, temperature, and moisture update equa-
tions in the GFS. Importantly, the estimation was performed individually and independently
to spectral coefficients, as opposed to grid points, because large scale basis functions are
expected to be less noisy and vary more slowly than individual grid points, thereby allow-
ing more accurate estimates of tendency errors. We found that the tendency errors differed
across the June 2005 boundary, owing to model changes, so that data only after June 2005
was used to correct the current version of the GFS. Consequently, the tendency errors were
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Figure 1: Mean square error of temperature at sigma level 0.2 for March 2007. The error
is decomposed into total (solid), bias (dot dashed), and random (dashed) components for
control (without mark) and corrected (marked with closed circles) runs.

estimated only during June 2005-June 2007. The tendency error growth rate was fitted to a
sinusoid to capture the annual cycle, and this function was then subtracted from the tendency
equations to correct the momentum, temperature, and moisture at every time step.

A set of 5-day forecasts, initialized at 0Z at each day in March 2007, were made with
both the original GFS and empirically corrected GFS. The mean square error of temperature,
averaged over the northern hemisphere on the 0.2 sigma surface, is shown in figure 1 for the
control run and the corrected run. The figure shows that the empirically corrected model has
less error than the control model. The figure also shows the mean square error decomposed
into bias and random components. These latter results reveal that all of the improvement in
the mean square error is due to reduction in forecast bias. Other prognostic variables (i.e.,
zonal velocity, meridional velocity, and moisture) had relatively little bias and thus were
only marginally improved, if at all. The same results were obtained for different verification
years. The major conclusion to draw from these results is: empirical correction of the GFS
does not improve the forecast above the improvement one would expect from a simple after-
the-fact correction, in which the bias of the forecast is subtracted from the forecast. Since
an after-the-fact correction is much easier to perform than empirical correction, we conclude
that an empirical correction is not worthwhile for the GFS, at least for improving the forecast.
These and other results have been summarized in our paper Yang et al. (2008).

In a separate study (funded by a different federal agency), the principal investigator ap-
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plied a similar empirical correction method the coupled land-atmosphere model at COLA.
The results of the two studies are consistent and can be summarized very simply: a state-
independent empirical correction can improve the forecast bias, but leads to no detectable
improvement in the random error (i.e, in the non-constant forecast error).

The above conclusion was not anticipated. Therefore, we undertook a systematic study
of the literature to understand why empirical correction seems to improve forecast skill in
some models but not in others. This study lead to the following hypothesis: a bias cor-
rection can improve forecast skill only if the bias is sufficiently large. This hypothesis is
physically plausible: a large bias implies strong climate drift and relatively useless fore-
casts, whereas a small bias probably does not degrade the forecast skill. This hypothesis also
seems to explain the conflicting results in the literature. On the one hand, Saha (1992) and
DelSole and Hou (1999) found that nudging based on tendency errors did not substantially
improve skill, but the bias in their models was always less than 10% for time scales less
than 5 days. On the other hand, Johansson and Saha (1989), Yang and Anderson (2000),
and Danforth et al. (2007) found that empirical correction improved skill, but each of these
models appear to have a large bias (we say “appear” because the bias was not reported in
these papers). Specifically, Yang and Anderson (2000) found that state-independent nudging
improved skill, but their original model could not beat the skill of a persistence forecast for
the Niño-3 region in the first 3 months. Similarly, Danforth et al. (2007) found that state-
independent correction improved skill, but the bias in their models presumably was large
since they used idealized models (such as a quasigeostrophic model) to forecast the NCEP-
NCAR Reanalysis. Johansson and Saha (1989) also found that a state-dependent correction
improved forecast skill, but their bias fluctuated from being dominant on short time scales to
constituting about 30% of the total error after 20 days.

Although the results did not turn out as anticipated, and indicate that the empirical cor-
rection method is not a recommended approach for operational models, we believe that the
present research serves a very useful purpose. Specifically, we believe that these results
represent the most rigorous and careful analysis of empirical correction to date. For in-
stance, the tendency errors were estimated from analyses that were consistent with the dy-
namical model being corrected, the tendency errors were estimated for individual spectral
coefficients, which have much less noise than individual grid points, a significance test was
performed to ensure that the correction terms were statistically significant, etc. Thus, the
present research compellingly demonstrates that state-independent corrections are unlikely
to improve the random error or anomaly skill of operational forecast models with small bi-
ases. Such definitive results are useful even if they do not lead to improvements in the GFS
and CFS– for instance, they are helpful in assessing future proposals of empirical correction.

3 Results for the CFS

Here we report results of applying the AGCM-correction to the CFS. These results have not
been published.
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Figure 2: Time series of the NINO3.4 in-
dex produced by the control CFS, corrected
CFS, and as estimated by Smith and Reynolds
(2004). The corrected CFS refers to the CFS
model using the empirical correction terms
for atmospheric temperature and winds, as de-
rived for the GFS.

Figure 3: The time mean SST error of the
control CFS (top) and the AGCM corrected
CFS models, over the period 1982-2001. The
corrected CFS refers to the CFS model us-
ing the empirical correction terms for atmo-
spheric temperature and winds, as derived for
the GFS.
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Figure 4: The monthly mean standardized
100hPa geopotential height at 40◦N in the
AGCM-corrected CFS (top panel) and in the
control CFS (bottom panel). The standardized
value is the difference between the forecast
and observed values, divided by the observed
standard deviation.

Figure 5: The 3-year mean difference between
the corrected CFS and the control CFS for four
different variations of the empirical correc-
tion: correction of temperature (T), momen-
tum (U, V), and moisture (Q) (top panel), cor-
rection of T only (second panel), correction of
U, V, T, Q in tropics only (third panel), and
correction of U, V, T, Q in midlatitudes only
(last panel).
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We applied the empirical corrections derived for the GFS to the atmospheric component
of the CFS, and then ran the model for 20 years. The resulting NINO3.4 index for the control
and corrected CFS are shown in fig. 2; for reference, we also show the observed NINO3.4
index in the bottom panel. The figure shows that the correction reduces the NINO3.4 vari-
ance and reduces the NINO3.4 bias error, which brings the variability of NINO3.4 more in
line with observations. The spatial variation of the bias in SST is shown in fig. 3. The figure
shows that the AGCM correction causes a significant warm bias in most ocean locations.
The space-time variation of this warm bias in the atmosphere is illustrated in fig. 4, which
shows the standardized geopotential height, defined as

Zstandardized =
Zmodel −mean[Zobserved]�

var[Zobserved]
. (1)

The idea for using this variable is that if the variable is normally distributed, then the abso-
lute value of the standardized variable should exceed 1.96 only 5% of the time. We note that
the mean and variance depends on month. This standardization allows us to check the con-
sistency of the variable with respect to observations. We see from fig. 4 that the control CFS
has a slight cold bias during summer, whereas the empirically corrected CFS has a strong
warm bias during the summer. Apparently, the empirical correction overcompensates for the
cold bias in the control.

To explore possible reasons for this warm bias, we re-ran the CFS under different em-
pirical corrections. The result of empirically correcting all prognostic variables, temperature
only, prognostic variables in the tropics only, and in midlatitudes only, are shown in fig. 5.
Comparison of the results shows that the CFS response is dominated primarily by the tem-
perature corrections– that is, the wind and moisture corrections seem to have little impact on
the CFS– and most of the temperature correction is achieved by forcing the tropics. We also
explored various corrections of surface winds, on the theory that the ocean bias represented
a response to wind stress, but found very little impact due to the wind corrections. We dis-
cussed these results extensively with COLA scientists and NCEP scientists, but were unable
to find ways to avoid the warm bias induced by the empirical correction.

It should be noted that the warm bias discussed above occurs primarily after the first year.
In particular, the cold bias in the control during the the first three months is substantially
removed by the correction. Thus, there is the possibility that during the first three months
the overall forecast skill of the CFS is improved by the empirical correction. To test this
possibility, we ran 5-member ensemble forecasts starting in December and ending in March
during the 10-year period 1983-1992. The anomaly correlation skills of the control and
corrected CFS revealed no statistically significant differences.

It is fair to say that our attempt to improve the CFS using empirical correction methods
was “unsuccessful.” The significant ocean drift induced by the empirical correction suggests
that atmosphere-only corrections to coupled models is not appropriate, because such correc-
tions neglect tendency errors due to the ocean model. It is plausible that the coupled CFS
has different tendency errors than the GFS, and that an empirical correction of the full CFS
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would have yielded better performance in the CFS. However, this approach is much more
computationally demanding and was beyond the scope of the proposed research.

4 Rigorous Estimation of Empirical Correction and Stochastic Forcing

Terms

Another component of the proposed research was to estimate the empirical correction terms
and the stochastic forcing terms within a mathematically rigorous data assimilation frame-
work. This component of the research was especially fruitful, we believe, at least from a
basic research point of view. We are especially proud of developing a new filter, called the
Diffuse Ensemble Square Root Filter (DESRF), for avoiding “filter collapse” in a mathemat-
ically rigorous way. Yang and DelSole (2009a) show that the diffuse filter is superior to the
traditional filter in the regime of copious observations, small ensemble size, and imperfect
model– a regime that is relevant to atmospheric and oceanic data assimilation. However,
the DESRF has a significant practical drawback in that it presently requires inversion of
very large matrices, though there exists an equivalent optimization framework that avoids
this inversion (which we did not develop further). We also have developed an approach to
estimating multiplicative model parameters in the ensemble Kalman Filter. This problem is
more difficult than estimating additive model parameters because multiplicative parameters
change the dynamical structure of the model and may inadvertently cause the model to be
unstable, after which the filter blows up. The new methodology is summarized in Yang and
DelSole (2009b).

In addition to empirically correcting the GFS and CFS, we had proposed to include
stochastic parameterizations in the models. Unfortunately, the available methods for spec-
ifying this stochastic parameterization are quite ad hoc (Buizza et al., 1999; Shutts, 2005;
Berner et al., 2008, 2009). We saw little value in inserting stochastic terms in the GFS
and CFS without a rational method for specifying these terms. Accordingly, we investi-
gated methods for estimating the stochastic model parameters within a rigorous mathemati-
cal framework. We were quickly surprised to discover that conventional parameter estima-
tion methods fail to give good estimates of stochastic parameters. This was all the more
surprising given that some papers claim otherwise! We developed a Bayesian method for es-
timating stochastic terms in a stochastic-dynamical model. The new method is based on gen-
eralized maximum likelihood estimation, in which the “optimum” estimate is the value that
maximizes the distribution of the parameters conditioned on the observations, underlying
stochastic-dynamical model, and prior information. The method is equivalent to minimizing
a cost function that is similar to, but not identical to, the cost function typically employed in
geophysical parameter estimation techniques. The new method leads to the familiar Kalman
Filter updates for the state, but also to an additional equation for estimating the parameter.
This new equation is challenging to solve because it is nonlinear and involves derivatives of
the forecast covariance matrix with respect to the parameter. Nevertheless, we were able to
develop practical methods for solving these equations.
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To illustrate the method, consider a stochastic version of the Lorenz three-variable model:

dx = −a(x− y)dt− αm(x− y) ◦ dw (2)
dy = (rxz − y)dt (3)
dz = (xy − bz)dt (4)

where dw is a Wiener process with zero mean and unit variance, and the “◦” symbol indi-
cates that the multiplicative noise is to be interpreted in the Stratonovich sense. We use the
traditional parameter values for chaotic dynamics, namely a = 10, b = 8/3, and r = 28.
In all experiments, the “truth” is defined as a single integration of the model starting from a
randomly selected initial condition, and the “observation” is defined as the truth plus random
numbers drawn independently from a normal distribution with zero mean and variance 0.01.
We perform three distinct data assimilation experiments. First, we set αm = 0 and assume
that a is unknown and estimate its value using augmentation methods with the Ensemble
Kalman Filter. The resulting estimates are shown in fig. 6a for three different initial condi-
tions. The figures shows that the EnKF accurately estimates the parameter a independent of
initial condition. In the second experiment, we set a = 10 and assume that αm is unknown
and estimate its value using the same augmentation method. The result, shown in fig. 6c,
shows that this approach fails to converge to the correct value of the stochastic parameter;
in fact, the converged value depends strongly on the initial condition (as can be anticipated
theoretically). The difference in performance revealed in figs. 6a and 6c reflects the fact
that a is a deterministic parameter and αm is a stochastic parameter. Finally, in the third
experiment, we again estimate αm but this time using the newly developed Bayesian Filter.
The result, shown in fig. 6d, shows that the filter gives reasonable estimates of the stochastic
parameter. (Figure 6b shows a simplified version of the full Bayesian solution.) Also shown
are the rank histograms of the probabilistic forecasts based on the augmented EnKF (fig. 6e)
and Bayesian estimate (fig. 6f), which shows that the Bayesian methods produces “flatter”
(and hence more reliable) probabilistic forecasts than the augmented EnKF. The results of
this specific research project have been submitted for publication (DelSole and Yang, 2009).

5 Papers Generated by the Present Research Project

For convenience, we list here the papers that were generated by the present research project:

• Yang et al. (2008)
• Yang and DelSole (2009a)
• Yang and DelSole (2009b)
• DelSole and Yang (2009)
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Figure 6: Results from four different data assimilation experiments with the Lorenz 3-
variable model (2)-(4). Specifically, the figure shows as a function of assimilation time:
(a) the estimated value of the parameter a using the augmentation method, (b) estimated
value of αm using the Bayesian method with no parameter variance update, (c) estimated
value of αm using the augmentation method, (d) estimated value of αm using the Bayesian
method with parameter variance update. In each case, three assimilation experiments were
performed using the same initial condition but different realizations of noise. The true values
are plotted as dashed lines for comparison. Also shown are (e) the rank histograms of x when
αm is estimated using the augmentation method (i.e., the experiment corresponding to panel
(c)), and (f) the rank histograms of x when αm is estimated using the Bayesian method with
parameter variance update (i.e., the experiment corresponding to panel (d)).
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